You are here
Taxonomy
Anthrax
EOL Text
Collection Sites: world map showing specimen collection locations for Anthrax
Anthrax is a genus of bombyliid flies, commonly known as "bee-flies" due to their resemblance to bees. Most are dull black flies, and are usually small to medium in size, 4–20 millimetres (0.2–0.8 in), and many species have striking wing patterns.[1]
Anthrax is a very large genus. While worldwide in distribution, most species are from the Palaearctic and Afrotropic regions. The genus includes species parasitic on tiger beetles – an unusual trait among the bee-flies. A. anthrax larvae parasitize bees. Many North American species parasitize solitary wasps.[2]
The type species is Musca morio Linnaeus, 1758, later found to be a misidentification of Musca anthrax Schrank, 1781.[3]
Species[edit source | edit]
-
This list is incomplete; you can help by expanding it.

Anthrax flies often hover around people and land on them.[2] This one, a member of A. oedipus or a similar species, landed repeatedly on the photographer's jeans.

Early conception of the genus Anthrax sensu Meigen.Plate from Johann Wilhelm Meigen Europäischen Zweiflügeligen.The genus is now much more restricted Only one species depicted in this plate is still in Anthrax
- Anthrax aethiops (Fabricius 1781)
- Anthrax alruqibi El-Hawagry, 2013[4]
- Anthrax analis Say, 1823
- Anthrax anthrax (Schrank 1781)
- Anthrax argentatus (Cole, 1919)
- Anthrax artemesia Marston, 1963
- Anthrax atriplex Marston, 1970
- Anthrax aureosquamosus Marston, 1963
- Anthrax binotatus Wiedemann in Meigen 1820
- Anthrax bowdeni Báez 1983
- Anthrax cascadensis Marston, 1963
- Anthrax cathetodaithmos Marston, 1970
- Anthrax chaparralus Marston, 1963
- Anthrax chionostigma Tsacas 1962
- Anthrax cintalapa Cole, 1957
- Anthrax columbiensis Marston, 1963
- Anthrax cybele (Coquillett, 1894)
- Anthrax dentata Becker 1907
- Anthrax distigma Wiedemann
- Anthrax francoisi Evenhuis & Greathead 1999
- Anthrax gideon Fabricius, 1805
- Anthrax giselae François 1966
- Anthrax greatheadi El-Hawagry 1998
- Anthrax innublipennis Marston, 1970
- Anthrax johanni Zaitzev 1997
- Anthrax koebelei Marston, 1970
- Anthrax larrea Marston, 1963
- Anthrax laticellus Marston, 1970
- Anthrax melanopogon (Becker, 1892)
- Anthrax moursyi El-Hawagry 1998
- Anthrax nidicola Cole, 1952
- Anthrax nigriventris Marston, 1970
- Anthrax nitidus Marston, 1970
- Anthrax oedipus Fabricius, 1805
- Anthrax painteri Marston, 1970
- Anthrax pauper (Loew, 1869)
- Anthrax pelopeius François 1966
- Anthrax picea Marston, 1963
- Anthrax pilosulus Strobl 1902
- Anthrax plesius (Curran, 1927)
- Anthrax pluricellus Williston, 1901
- Anthrax pluto Wiedemann, 1828
- Anthrax punctulatus Macquart 1835
- Anthrax seriepinctatus (Osten Sacken, 1886)
- Anthrax slossonae (Johnson, 1913)
- Anthrax snowi Marston, 1970
- Anthrax stellans (Loew, 1869)
- Anthrax sticticus Klug 1832
- Anthrax striatipennis Marston, 1970
- Anthrax trifasciatus Meigen 1804
- Anthrax vallicola Marston, 1963
- Anthrax varius Fabricius 1794
- Anthrax virgo Egger 1859
- Anthrax zohrayensis El-Hawagry 2002
- Anthrax zonabriphagus (Portchinsky 1895
References[edit source | edit]
- ^ F. M. Hull (1973). Bee flies of the world. The genera of the family Bombyliidae. Washington: Smithsonian Institution Press. pp. 1–687. ISBN 0-87474-131-9.
- ^ a b Eaton, Eric R.; Kaufman, Kenn (2007). Kaufman Field Guide to Insects of North America. Houghton Mifflin. p. 292. ISBN 978-0-618-15310-7.
- ^ Magdi S. El-Hawagry, Aly A. El-Moursy, Francis Gilbert & Samy Zalat (2000). "The tribe Anthracini Latreille (Bombyliidae, Diptera) from Egypt" (PDF). Egyptian Journal of Biology 2: 97–117.
- ^ El-Hawagry; Khalil; Sharaf; Fadl; Aldawood (2013). "A preliminary study on the insect fauna of Al-Baha Province, Saudi Arabia, with descriptions of two new species". Zookeys 274: 1—88. doi:10.3897/zookeys.274.4529.
![]() |
Wikimedia Commons has media related to: Anthrax (fly) |
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Anthrax_(fly)&oldid=566966220 |
![]() |
The lead section of this article may need to be rewritten. Please discuss this issue on the talk page and read the layout guide to make sure the section will be inclusive of all essential details. (March 2013) |
Bacillus anthracis is the etiologic agent of anthrax — a common disease of livestock and, occasionally, of humans — and the only obligate pathogen within the genus Bacillus.[1]B. anthracis is a Gram-positive, endospore-forming, rod-shaped bacterium, with a width of 1–1.2µm and a length of 3–5µm.[1] It can be grown in an ordinary nutrient medium under aerobic or anaerobic conditions.[2]
It is one of few bacteria known to synthesize a protein capsule (poly-D-gamma-glutamic acid). Like Bordetella pertussis, it forms a calmodulin-dependent adenylate cyclase exotoxin known as (edema factor), along with lethal factor. It bears close genotypical and phenotypical resemblance to Bacillus cereus and Bacillus thuringiensis. All three species share cellular dimensions and morphology. All form oval spores located centrally in an unswollen sporangium. B. anthracis spores in particular are highly resilient, surviving extremes of temperature, low-nutrient environments, and harsh chemical treatment over decades or centuries.
The spore is a dehydrated cell with thick walls and additional layers that form inside the cell membrane. It can remain inactive for many years, but if it comes into a favorable environment, it begins to grow again. It is sometimes called an endospore, because it initially develops inside the rod-shaped form. Features such as the location within the rod, the size and shape of the endospore, and whether or not it causes the wall of the rod to bulge out are characteristic of particular species of Bacillus. Depending upon the species, the endospores are round, oval, or occasionally cylindrical. They are highly refractile and contain dipicolinic acid. Electron micrograph sections show that they have a thin outer spore coat, a thick spore cortex, and an inner spore membrane surrounding the spore contents. The spores resist heat, drying, and many disinfectants (including 95% ethanol).[3]
Contents
Historical background[edit]
French physician Casimir Davaine (1812-1882) demonstrated the symptoms of anthrax were invariably accompanied by the microbe B. anthracis.[4] German physician Aloys Pollender (1799–1879) is also credited for this discovery. B. anthracis was the first bacterium conclusively demonstrated to cause disease, by Robert Koch in 1876.[5] The species name anthracis is from the Greek anthrax (ἄνθραξ), meaning "coal" and referring to the most common form of the disease, cutaneous anthrax, in which large, black skin lesions are formed.
Genome structure[edit]
B. anthracis has a single chromosome which is a circular, 5,227,293 bp DNA molecule.[6] It also has two circular, extrachromosomal, double-stranded DNA plasmids, pXO1 and pXO2. Both the pXO1 and pXO2 plasmids are required for full virulence and represent two distinct plasmid families.[7]
Feature | Chromosome | pXO1 | pXO2 |
---|---|---|---|
Size (bp) | 5,227,293 | 181,677 | 94,829 |
Number of genes | 5,508 | 217 | 113 |
Replicon coding (%) | 84.3 | 77.1 | 76.2 |
Average gene length (nt) | 800 | 645 | 639 |
G+C content (%) | 35.4 | 32.5 | 33.0 |
rRNA operons | 11 | 0 | 0 |
tRNAs | 95 | 0 | 0 |
sRNAs | 3 | 2 | 0 |
Phage genes | 62 | 0 | 0 |
Transposon genes | 18 | 15 | 6 |
Disrupted reading frame | 37 | 5 | 7 |
Genes with assigned function | 2,762 | 65 | 38 |
Conserved hypothetical genes | 1,212 | 22 | 19 |
Genes of unknown function | 657 | 8 | 5 |
Hypothetical genes | 877 | 122 | 51 |
pXO1 plasmid[edit]
The pXO1 plasmid (182 kb) contains the genes that encode for the anthrax toxin components: pag (protective antigen, PA), lef (lethal factor, LF), and cya (edema factor, EF). These factors are contained within a 44.8 kb pathogenicity island (PAI). The lethal toxin is a combination of PA with LF and the edema toxin is a combination of PA with EF. The PAI also contains genes which encode a transcriptional activator AtxA and the repressor PagR, both of which regulate the expression of the anthrax toxin genes.[7]
pXO2 plasmid[edit]
pXO2 encodes a five-gene operon (capBCADE) which synthesizes a poly-γ-D-glutamic acid (polyglutamate) capsule. This capsule allows B. anthracis to evade the host immune system by protecting itself from phagocytosis. Expression of the capsule operon is activated by the transcriptional regulators AcpA and AcpB, located in the pXO2 pathogenicity island (35 kb). Interestingly, AcpA and AcpB expression are under the control of AtxA from pXO1.[7]
Strains[edit]
There are 89 known strains of B. anthracis. Notable examples include:
- Sterne strain (34F2; aka the "Weybridge strain"), used by Max Sterne in his 1930s vaccines
- Vollum strain, formerly weaponized by the US, UK and Iraq; isolated from cow in Oxfordshire, UK, in 1935
- Vollum 1B, weaponized by the US and UK in the 1940s-60s
- Vollum-14578, UK bio-testing contaminated Gruinard Island, Scotland, in 1940s
- V770-NP1-R, the avirulent, nonencapsulated strain used in the BioThrax vaccine
- Ames strain, isolated from cow in Texas, USA, in 1981; famously used in AMERITHRAX letter attacks (2001)
- Ames Ancestor
- Ames Florida
- H9401, isolated from human patient in Korea; used in investigational anthrax vaccines[8]
Evolution[edit]
Whole genome sequencing has made reconstruction of the B. anthracis phylogeny extremely accurate. A contributing factor to the reconstruction is B. anthracis being monomorphic, meaning it has low genetic diversity, including the absence of any measurable lateral DNA transfer since its derivation as a species. The lack of diversity is due to a short evolutionary history that has precluded mutational saturation in single nucleotide polymorphisms (SNPs).[9]
A short evolutionary time does not necessarily mean a short chronological time. When DNA is replicated, mistakes occur which become genetic mutations. The build-up of these mutations over time leads to the evolution of a species. During the B. anthracis life-cycle, it spends a significant amount of time in the soil spore reservoir stage, a stage in which DNA replication does not occur. These prolonged periods of dormancy have greatly reduced the evolutionary rate of the organism.[9]
Nearest neighbors[edit]
B. anthracis belongs to the B. cereus group consisting of the strains: B. cereus, B. anthracis, B. thuringiensis, B. weihenstephanensis, B. mycoides, and B. pseudomycoides. The first three strains are pathogenic or opportunistic to insects or mammals while the last three are considered nonpathogenic. The strains of this group are genetically and phenotypically heterogeneous overall, but some of the strains are more closely related and phylogenetically intermixed at the chromosome level. The B. cereus group generally exhibits complex genomes and most carry varying numbers of plasmids.[7]
B. cereus is a soil dwelling bacterium which can colonize the gut of invertebrates as a symbiont[10] and is a frequent cause of food poisoning[11] It produces an emetic toxin, enterotoxins, and other virulence factors.[12] The enterotoxins and virulence factors are encoded on the chromosome while the emetic toxin is encoded on a 270 kb plasmid, pCER270.[7]
B. thuringiensis is an insect pathogen and is characterized by production of parasporal crystals of insecticidal toxins Cry and Cyt.[13] The genes encoding these proteins are commonly located on plasmids which can be lost from the organism making it indistinguishable from B. cereus.[7]
Pseudogene[edit]
PlcR is a global transcriptional regulator which controls most of the secreted virulence factors in B. cereus and B. thuringiensis. It is chromosomally encoded and is ubiquitous throughout the cell.[14] In B. anthracis, however, the plcR gene contains a single base change at position 640, a nonsense mutation, which creates a dysfunctional protein. While 1% of the B. cereus group carries an inactivated plcR gene, none of them carry the specific mutation found only in B. anthracis.[15]
The plcR gene is part of a two-gene operon with papR.[16][17] The papR gene encodes a small protein which is secreted from the cell and the reimported as a processed heptapeptide forming a quorum-sensing system.[17][18] The lack of PlcR in B. anthracis is a principle characteristic differentiating it from other members of the B. cereus group. While B. cereus and B. thuringiensis depend on the plcR gene for expression of their virulence factors, B. anthracis relies on the pXO1 and pXO2 plasmids for its virulence.[7]
Clinical aspects[edit]
Pathogenesis[edit]
B. anthracis possesses a capsule that is antiphagocytic and is essential for full virulence. The organism also produces three plasmid-coded exotoxins: edema factor, a calmodulin- dependent adenylate cyclase, causes elevation of intracellular cAMP, and is responsible for the severe edema usually seen in B. anthracis infections; lethal toxin is responsible for tissue necrosis; protective antigen (so named because of its use in producing protective anthrax vaccines) mediates cell entry of edema factor and lethal toxin.
Manifestations in human disease[edit]
Three forms of human anthrax disease are recognized based on their portal of entry.
- Cutaneous, the most common form (95%), causes a localized, inflammatory, black, necrotic lesion (eschar).
- Pulmonary, the highly fatal form, is characterized by sudden, massive chest edema followed by cardiovascular shock.
- Gastrointestinal, a rare but also fatal (causes death to 25%) type, results from ingestion of spores.
Prevention and treatment[edit]
A number of anthrax vaccines have been developed for preventive use in livestock and humans. Infections with B. anthracis can be treated with β-lactam antibiotics such as penicillin, and others which are active against Gram-positive bacteria.[19] Penicillin-resistant B. anthracis can be treated with fluoroquinolones such as ciprofloxacin or tetracycline antibiotics such as doxycycline.
Laboratory research[edit]
Components of tea, such as polyphenols, have the ability to inhibit the activity both of Bacillus anthracis and its toxin considerably; spores, however, are not affected. The addition of milk to the tea completely inhibits its antibacterial activity against anthrax.[20] Activity against the B. athracis in the laboratory does not prove that drinking tea affects the course of an infection, since it is unknown how these polyphenols are absorbed and distributed within the body.
Recent research[edit]
Advances in genotyping methods have led to improved genetic analysis for variation and relatedness. These methods include multiple-locus variable-number tandem repeat analysis (MLVA) and typing systems using canonical single-nucleotide polymorphisms (SNPs). The Ames ancestor chromosome was sequenced in 2003[6] and contributes to the identification of genes involved in the virulence of B. anthracis. Recently, B. anthracis isolate H9401 was isolated from a Korean patient suffering from gastrointestinal anthrax. The goal of the Republic of Korea is to use this strain as a challenge strain to develop a recombinant vaccine against anthrax.[8]
The H9401 strain isolated in the Republic of Korea was sequenced using 454 GS-FLX technology and analyzed using several bioinformatics tools to align, annotate, and compare H9401 to other B. anthracis strains. The sequencing coverage level suggests a molecular ratio of pXO1:pXO2:chromosome as 3:2:1 which is identical to the Ames Florida and the Ames Ancestor strains. H9401 has 99.679% sequence homology with Ames Ancestor with an amino acid sequence homology of 99.870%. H9401 has a circular chromosome (5,218,947 bp with 5,480 predicted ORFs), the pXO1 plasmid (181,700 bp with 202 predicted ORFs), and the pXO2 plasmid (94,824 bp with 110 predicted ORFs).[8] As compared to the Ames Ancestor chromosome above, the H9401 chromosome is about 8.5 kb smaller. Due to the high pathogenecity and sequence similarity to the Ames Ancestor, H9401 will be used as a reference for testing the efficacy of candidate anthrax vaccines by the Repbulic of Korea.[8]
Host interactions[edit]
As with most other pathogenic bacteria, B. anthracis must acquire iron to grow and proliferate in its host environment. The most readily available iron sources for pathogenic bacteria are the heme groups used by the host in the transport of oxygen. To scavenge heme from host hemoglobin and myoglobin, B. anthracis uses two secretory siderophore proteins, IsdX1 and IsdX2. These proteins can separate heme from hemoglobin, allowing surface proteins of B. anthracis to transport it into the cell.[21]
References[edit]
- ^ a b Spencer, RC (March 2003). "Bacillus anthracis.". Journal of clinical pathology 56 (3): 182–7. PMC 1769905. PMID 12610093. Retrieved 19 July 2012.
- ^ Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Group 17: gram-positive cocci, p. 527–558. In W. R. Hensyl (ed.), Bergey's manual of determinative bacteriology, 9th ed. Williams and Wilkins, Baltimore, Md.
- ^ Bergey's Manual of Systematic Bacteriology, vol. 2, p. 1105, 1986, Sneath, P.H.A.; Mair, N.S.; Sharpe, M.E.; Holt, J.G. (eds.); Williams & Wilkins, Baltimore, Maryland, USA
- ^ Théodoridès, J (April 1966). "Casimir Davaine (1812-1882): a precursor of Pasteur". Medical history 10 (2): 155–65. doi:10.1017/S0025727300010942. PMC 1033586. PMID 5325873.
- ^ Koch, R. (1876) "Untersuchungen über Bakterien: V. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis" (Investigations into bacteria: V. The etiology of anthrax, based on the ontogenesis of Bacillus anthracis), Cohns Beitrage zur Biologie der Pflanzen, vol. 2, no. 2, pages 277–310.
- ^ a b Read, TD; Peterson, SN; Tourasse, N; Baillie, LW; Paulsen, IT; Nelson, KE; Tettelin, H; Fouts, DE; Eisen, JA; Gill, SR; Holtzapple, EK; Okstad, OA; Helgason, E; Rilstone, J; Wu, M; Kolonay, JF; Beanan, MJ; Dodson, RJ; Brinkac, LM; Gwinn, M; DeBoy, RT; Madpu, R; Daugherty, SC; Durkin, AS; Haft, DH; Nelson, WC; Peterson, JD; Pop, M; Khouri, HM; Radune, D; Benton, JL; Mahamoud, Y; Jiang, L; Hance, IR; Weidman, JF; Berry, KJ; Plaut, RD; Wolf, AM; Watkins, KL; Nierman, WC; Hazen, A; Cline, R; Redmond, C; Thwaite, JE; White, O; Salzberg, SL; Thomason, B; Friedlander, AM; Koehler, TM; Hanna, PC; Kolstø, AB; Fraser, CM (May 1, 2003). "The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria.". Nature 423 (6935): 81–6. doi:10.1038/nature01586. PMID 12721629. Cite uses deprecated parameters (help)
- ^ a b c d e f g Kolstø, Anne-Brit; Tourasse, Nicolas J.; Økstad, Ole Andreas (1 October 2009). "What Sets Apart from Other Species?". Annual Review of Microbiology 63 (1): 451–476. doi:10.1146/annurev.micro.091208.073255. Cite uses deprecated parameters (help)
- ^ a b c d Chun, J.-H.; Hong, K.-J.; Cha, S. H.; Cho, M.-H.; Lee, K. J.; Jeong, D. H.; Yoo, C.-K.; Rhie, G.-e. (18 July 2012). "Complete Genome Sequence of Bacillus anthracis H9401, an Isolate from a Korean Patient with Anthrax". Journal of Bacteriology 194 (15): 4116–4117. doi:10.1128/JB.00159-12. Cite uses deprecated parameters (help)
- ^ a b Keim, Paul; Gruendike, Jeffrey M.; Klevytska, Alexandra M.; Schupp, James M.; Challacombe, Jean; Okinaka, Richard (1 December 2009). "The genome and variation of Bacillus anthracis". Molecular Aspects of Medicine 30 (6): 397–405. doi:10.1016/j.mam.2009.08.005. Cite uses deprecated parameters (help)
- ^ Jensen, G. B.; Hansen, B. M.; Eilenberg, J.; Mahillon, J. (18 July 2003). "The hidden lifestyles of Bacillus cereus and relatives". Environmental Microbiology 5 (8): 631–640. doi:10.1046/j.1462-2920.2003.00461.x. Cite uses deprecated parameters (help)
- ^ Drobniewski, FA (October 1993). "Bacillus cereus and related species.". Clinical Microbiology Reviews 6 (4): 324–38. PMC 358292. PMID 8269390.
- ^ Stenfors Arnesen, Lotte P.; Fagerlund, Annette; Granum, Per Einar (1 July 2008). "From soil to gut: and its food poisoning toxins". FEMS Microbiology Reviews 32 (4): 579–606. doi:10.1111/j.1574-6976.2008.00112.x. PMID 18422617. Cite uses deprecated parameters (help)
- ^ Schnepf, E; Crickmore, N; Van Rie, J; Lereclus, D; Baum, J; Feitelson, J; Zeigler, DR; Dean, DH (September 1998). "Bacillus thuringiensis and its pesticidal crystal proteins.". Microbiology and molecular biology reviews : MMBR 62 (3): 775–806. PMC 98934. PMID 9729609. Cite uses deprecated parameters (help)
- ^ Agaisse, H; Gominet, M; Okstad, OA; Kolstø, AB; Lereclus, D (June 1999). "PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis.". Molecular microbiology 32 (5): 1043–53. PMID 10361306. Cite uses deprecated parameters (help)
- ^ Slamti, L; Perchat, S; Gominet, M; Vilas-Bôas, G; Fouet, A; Mock, M; Sanchis, V; Chaufaux, J; Gohar, M; Lereclus, D (June 2004). "Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic.". Journal of bacteriology 186 (11): 3531–8. doi:10.1128/JB.186.11.3531-3538.2004. PMC 415780. PMID 15150241. Cite uses deprecated parameters (help)
- ^ Okstad, OA; Gominet, M; Purnelle, B; Rose, M; Lereclus, D; Kolstø, AB (November 1999). "Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin.". Microbiology (Reading, England) 145 (11): 3129–38. PMID 10589720. Cite uses deprecated parameters (help)
- ^ a b Slamti, L; Lereclus, D (Sep 2, 2002). "A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group.". The EMBO Journal 21 (17): 4550–9. PMC 126190. PMID 12198157. Cite uses deprecated parameters (help)
- ^ Bouillaut, L; Perchat, S; Arold, S; Zorrilla, S; Slamti, L; Henry, C; Gohar, M; Declerck, N; Lereclus, D (June 2008). "Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides.". Nucleic Acids Research 36 (11): 3791–801. doi:10.1093/nar/gkn149. PMID 18492723. Cite uses deprecated parameters (help)
- ^ Barnes JM (1947). "Penicillin and B. anthracis". J Path Bacteriol 194: 113–125. doi:10.1002/path.1700590113.
- ^ "Anthrax and tea". Society for Applied Microbiology. 2011-12-21. Retrieved 2011-12-21.
- ^ Maresso AW, Garufi G, Schneewind O (2008). "Bacillus anthracis Secretes Proteins That Mediate Heme Acquisition from Hemoglobin". PLOS Pathogens. 4(8): e1000132.
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Bacillus_anthracis&oldid=592842718 |
Syntype for Anthrax var. pufictns Coquillett, 1887
Catalog Number: USNM
Collection: Smithsonian Institution, National Museum of Natural History, Department of Entomology
Sex/Stage: Female;
Preparation: Pinned
Locality: No locality label, Cochise, Arizona, United States
- Syntype: 1887. Transactions of the American Entomological Society & Proceedings of the Academy of Natural Sciences of Philadelphia. 14: 164.
License | http://creativecommons.org/licenses/by/3.0/ |
Rights holder/Author | This image was obtained from the Smithsonian Institution. Unless otherwise noted, this image or its contents may be protected by international copyright laws. |
Source | http://collections.mnh.si.edu/search/ento/?irn=9141961 |
Barcode of Life Data Systems (BOLD) Stats
Specimen Records: | 62 | Public Records: | 1 |
Specimens with Sequences: | 27 | Public Species: | 1 |
Specimens with Barcodes: | 26 | Public BINs: | 1 |
Species: | 18 | ||
Species With Barcodes: | 12 | ||
Barcode of Life Data Systems (BOLDS) Stats
Public Records: 0
Specimens with Barcodes: 3
Species With Barcodes: 1
Barcode of Life Data Systems (BOLDS) Stats
Public Records: 0
Specimens with Barcodes: 3
Species With Barcodes: 1