You are here
Taxonomy
Pyralidae
EOL Text
Apomorphies:
Forewing vein R5 stalked or fused with R3+R4. Tympanal case closed, or nearly closed. Praecinctorium absent. Tympanum and conjunctiva lie in the same plane. Male genitalia with uncus arms, a pair of processes arising laterally from the base of the uncus. Larvae almost always with sclerotized ring around base of seta SD1
Animal / pathogen
Entomophthora neopyralidarum infects adult of Pyralidae
Animal / parasitoid / endoparasitoid
larva of Eurysthaea scutellaris is endoparasitoid of larva of Pyralidae
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | BioImages, BioImages - the Virtual Fieldguide (UK) |
Source | http://www.bioimages.org.uk/html/Pyralidae.htm |
Pyralidae (pyralid lepidopterans) preys on:
Mammalia
Based on studies in:
Costa Rica (Carrion substrate)
This list may not be complete but is based on published studies.
License | http://creativecommons.org/licenses/by/3.0/ |
Rights holder/Author | Cynthia Sims Parr, Joel Sachs, SPIRE |
Source | http://spire.umbc.edu/fwc/ |
Barcode of Life Data Systems (BOLD) Stats
Specimen Records:28769
Specimens with Sequences:26314
Specimens with Barcodes:25038
Species:2344
Species With Barcodes:2119
Public Records:7690
Public Species:1164
Public BINs:1423
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (February 2012) |
Waxworms are the caterpillar larvae of wax moths, which belong to the snout moth family (Pyralidae). Two closely related species are commercially bred – the lesser wax moth (Achroia grisella) and the greater wax moth (Galleria mellonella). They belong to the tribe Galleriini in the snout moth subfamily Galleriinae. Another species whose larvae share that name is the Indian meal moth (Plodia interpunctella), though this species is not available commercially.
The adult moths are sometimes called "bee moths", but, particularly in apiculture, this can also refer to Aphomia sociella, another Galleriinae moth which also produces waxworms, but is not commercially bred.
Waxworms are medium-white caterpillars with black-tipped feet and small, black or brown heads.
In the wild, they live as nest parasites in bee colonies and eat cocoons, pollen, and shed skins of bees, and chew through beeswax, thus the name. Beekeepers consider waxworms to be pests. Galleria mellonella (the greater wax moths) will not attack the bees directly, but feed on the wax used by the bees to build their honeycomb. Their full development to adults requires access to used brood comb or brood cell cleanings—these contain protein essential for the larvae's development, in the form of brood cocoons. The destruction of the comb will spill or contaminate stored honey and may kill bee larvae or be the cause of the spreading of honey bee diseases.
When kept in captivity, they can go a long time without eating, particularly if kept at a cool temperature. Captive wax worms are generally raised on a mixture of cereal grain, bran and honey.
Microbes found in the guts of waxworms like to feast on polyethylene, and could help dispose of plastic.[1]
Contents
Waxworms as live food[edit]
These larvae are used extensively as live food for terrarium pets and some pet birds, mostly due to their high fat content, their ease of breeding, and their ability to survive for weeks at low temperatures.
Waxworms are an ideal food for many insectivorous animals and plants.
Most commonly, they are used to feed reptiles such as bearded dragons (species in the genus Pogona), the neon tree dragon (Japalura splendida), geckos, brown anole (Anolis sagrei), turtles such as the three-toed box turtle (Terrapene carolina triunguis) or chameleons.
They can also be used for amphibians such as Ceratophrys frogs or salamanders or newts such as the Strauch's spotted newt (Neurergus strauchii) or the axolotls
Small mammals such as the domesticated hedgehog can also be fed with wax worms.
Birds such as the greater honeyguide can also appreciate the food.
They can also be used as food for captive predatory insects reared in terrarium, such as assassin bugs in the genus Platymeris.
Waxworms are also occasionally used to feed certain kinds of fish in the wild, such as bluegills (Lepomis macrochirus).
They can also be consumed by humans who practice entomophagy.
Waxworms as bait[edit]
Waxworms may be store-bought or raised by anglers.[2]Anglers and fishing bait shops often refer to the larvae as "waxies". They are used for catching some varieties of panfish, members of the sunfish family (Centrarchidae), Green sunfish (Lepomis cyanellus) and can be used for shallow water fishing with the use of a lighter weight. They are also used for fishing some members of the Salmonidae family, Masu salmon (Oncorhynchus masou), white-spotted char (Salvelinus leucomaenis) and rainbow trout (Oncorhynchus mykiss).
Waxworms as an alternative to mammals in animal research[edit]
Waxworms can replace mammals in certain types of scientific experiments with animal testing, especially in studies examining the virulence mechanisms of bacterial and fungal pathogens.[3] Waxworms prove valuable in such studies because the innate immune system of insects is strikingly similar to that of mammals.[4] Waxworms survive well at human body temperature and are large enough in size to allow straightforward handling and accurate dosing. Additionally, the considerable cost savings when using waxworms instead of small mammals (usually mice, hamsters, or guinea pigs) allows testing throughput that is otherwise impossible. Using waxworms, it is now possible to screen large numbers of bacterial and fungal strains to identify genes involved in pathogenesis or large chemical libraries with the hope of identifying promising therapeutic compounds. The later studies have proved especially useful in identifying chemical compounds with favorable bioavailability.[5]
See also[edit]
References[edit]
- ^ [1]
- ^ "Use for Waxworms". Retrieved 22 December 2014
- ^ Antunes, Luísa C. S.; Imperi, Francesco; Carattoli, Alessandra; Visca, Paolo (2011). Adler, Ben, ed. "Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogenicity". PLoS ONE 6 (8): e22674. doi:10.1371/journal.pone.0022674. PMC 3148234. PMID 21829642.
- ^ Kavanagh, Kevin; Reeves, Emer P. (2004). "Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens". FEMS Microbiology Reviews 28 (1): 101–12. doi:10.1016/j.femsre.2003.09.002. PMID 14975532.
- ^ Aperis, G; Burgwynfuchs, B; Anderson, C; Warner, J; Calderwood, S; Mylonakis, E (2007). "Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain". Microbes and Infection 9 (6): 729–34. doi:10.1016/j.micinf.2007.02.016. PMC 1974785. PMID 17400503.
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Waxworm&oldid=639243826 |
The Pyralidae or snout moths are a family of Lepidoptera in the ditrysian superfamily Pyraloidea. In many (particularly older) classifications, the grass moths (Crambidae) are included in the Pyralidae as a subfamily, making the combined group one of the largest families in the Lepidoptera. The latest review by Munroe & Solis, in Kristensen (1999)[full citation needed] retains the Crambidae as a full family of pyraloidea.
Relationship with humans[edit]
Most of these small moths are inconspicuous and of no particular significance to humans. Some are more notable, however. Perhaps the most familiar are waxworms, which are the caterpillar larvae of the greater (Galleria mellonella) and lesser (Achroia grisella) wax moths (subfamily Galleriinae). They are natively pests of beehives, but are bred indoors in enormous numbers as live food for small reptile and bird pets and similar animals. They are also used as fishing bait for trout fishing.
Other notable snout moths are primarily relevant due to their larval food choices. Examples include:
- Alligatorweed stem borer (Arcola malloi: Phycitinae) – biological control of alligatorweed (Alternanthera philoxeroides)
- Almond moth (Cadra cautella: Phycitinae) – pest of stored cereals and dry fruit; now introduced almost world-wide
- Cacao moth, tobacco moth, warehouse moth (Ephestia elutella: Phycitinae) – pest of stored dry vegetable products; Europe, introduced to some other regions (e.g. Australia)
- Dried fruit moth (Cadra calidella: Phycitinae)
- Locust bean moth (Ectomyelois ceratoniae: Phycitinae)
- Etiella behrii (Phycitinae) – pest of stored legumes; Southeast Asia and Australia
- "Flour moths" – pests of stored grains, spices, flour, and similar dry vegetable products; now introduced almost world-wide
- Indian mealmoth (Plodia interpunctella: Phycitinae)
- Mediterranean flour moth, Indian flour moth (Ephestia kuehniella: Phycitinae)
- Grease moth (Aglossa pinguinalis: Pyralinae) – pest of suet and other oily food
- Lesser cornstalk borer (Elasmopalpus lignosellus: Phycitinae) – stalk pest of corn (Zea mays); tropical and subtropical Americas, introduced to the Hawaiian Islands
- Mahogany webworm (Macalla thyrsisalis: Epipaschiinae) – defoliator pest of mahogany trees (Swietenia); Neotropics
- Meal moth (Pyralis farinalis: Pyralinae) – pest of stored grain, flour and other cereals; now introduced almost world-wide
- Pear fruit borer (Pempelia heringii: Phycitinae) – pest of apple and pear fruits; East Asia, introduced to the Hawaiian Islands
- Pine webworm (Pococera robustella: Epipaschiinae) – defoliator pest of pines (Pinus); North America east of Great Lakes region
- Raisin moth (Cadra figulilella: Phycitinae) – pests of stored dry fruit; now introduced almost world-wide
- Rice moth (Corcyra cephalonica: Galleriinae) – pest of stored grain, flour and other cereals
- South American cactus moth (Cactoblastis cactorum: Phycitinae) – biological control of prickly pears (Opuntia)
- Southern pine coneworm, "pitch moth" (Dioryctria amatella: Phycitinae) – cone and shoot pest of pines (Pinus); southern North America
- Stored nut moth (Paralipsa gularis: Galleriinae) – pest of stored nuts and drupes; Southeast Asia, introduced to Western Europe
- Sunflower moth (Homoeosoma nebulella: Phycitinae) – pest of sunflower seeds; Europe and surrounding regions
The European corn borer (Ostrinia nubilalis) and southern cornstalk borer (Diatraea crambidoides), formerly considered snout moths, are placed in the Crambidae which, as noted above, are usually regarded as a separate family today.
Systematics[edit]
Five subfamilies are generally recognized in the Pyralidae today. The Acentropinae (= Nymphulinae), occasionally still placed here, do indeed seem to belong in the Crambidae.
The snout moth subfamilies are, listed in the presumed phylogenetic sequence from the most primitive to the most advanced:
- Chrysauginae (including Bradypodicolinae, Semniidae) – about 400 species occurring predominantly in the Neotropical region. Larvae typically feed on plants, but some have more unusual feeding habits. The latter include for example some myrmecophilous species, as well as a number of sloth moths which are dependent on sloths for their entire life cycle. Most Chrysauginae larvae have a sclerotised ring around seta SD1 of the metathorax.
- Galleriinae (including Macrothecinae) – about 300 species worldwide. The males of galleriine moths have a gnathos almost or completely reduced, the pupae have a prominent dorsal median ridge on the thorax and abdomen, and most larvae have a sclerotised ring around seta SD1 of the first abdominal segment.
- Pyralinae (including Endotrichinae, Hypotiinae) – rather diverse in the Old World; a lesser amount of the c.900 species occurs elsewhere. The females of almost all Pyralinae except Cardamyla and Embryoglossa are recognizable by the very short ductus bursae of their genitals.
- Epipaschiinae (including Pococerinae) – over 550 described species in the tropical and temperate regions (except Europe). Larvae are leaf rollers, leaf tiers or leaf miners. Some species are minor pests of a few commercial crops. Epipaschiinae are generally hard to recognize, except in the case of adult males which have a few characteristic traits, such as the upturned and pointed third segment of the labial palps and usually a scaly projection from the antenna base. The larvae lack any stereotyped seta sclerotisations.
- Phycitinae (including Anerastiinae, Peoriinae) – probably the most difficult group of Pyraloidea in terms of identification and classification. They comprise more than 600 genera and about 4000 species found all over the world. The characteristic trait of the caterpillars is a sclerotised area encircling the base of seta SD1 on the mesothorax, while the adult females have – like the males of Pyralidae in general do – a frenulum consisting of a single bristle which in turn is composed of multiple acanthae.
Genera incertae sedis[edit]
In addition to those assigned to the tribes above, there are several genera of (presumed) Pyralidae which are not firmly placed in this arrangement. Some may be very basal lineages which stand outside the main snout moth radiations. But given the changing circumscription of the Pyralidae, some are likely to be placed outside this group in its modern meaning, either in the Crambidae or in other lineages of basal Obtectomera. Some may even belong to more ancient moth lineages, such as the Alucitoidea or Pterophoroidea. Finally, it is possible that some of these (usually little-studied) genera are junior synonyms of genera described earlier. The genera in question are:
|
|
The following genera have been placed in the Pyralidae when these were still circumscribed sensu lato and are sometimes still treated thus, but actually they seem to belong in the Crambidae (see also Micronix and Tanaobela):
- Alphacrambus
- Peniculimius
- Steneromene
- Thopeutis
- Yoshiyasua (formerly Melanochroa Yohiyasu, 1985 nec Roeder, 1886: preoccupied)
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Pyralidae&oldid=631499776 |
Diversity description:
There are currently 5 described subfamilies of Pyralidae: Chrysauginae Lederer (1863), Epipaschiinae Meyrick (1884), Galleriinae Zeller (1848), Phycitinae Zeller (1839), and Pyralinae Latreille (1809). Currently there are around 4400 named species of Pyralidae, although much of the diversity is undescribed.
Geographic Range:
Nearctic, Palearctic, Oriental, Ethiopian, Australian, Oceanic Island
Number of stemmata:
from 1 to 6
Secondary setae:
absent
Body setae on verrucae:
absent
Body setae on chalazae:
absent
Body setae on scoli:
absent
Pairs of thoracic legs:
from 3
Larval abdomen description:
A8 SD1 surrounded by chitinous ring (occasionally reduced). A1-A7: L2 anterodorsal or sometimes dorsal of L1. A8 SV-group usually bisetose. A9 L group usually trisetose (L3 rarely lost). Anal shield: distance D1-D1 usually greater than SD1-SD1 (exceptions in Galleriinae, Pyralinae, Euzophera). Crochets in complete circle.
Abdominal glands:
absent
Abdominal prolegs:
present
Pairs of abdominal legs:
from 5
Proleg configuration:
normal
Anal comb on A10:
absent